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Supplementary notes 

S1 The results of Photonics convolution operation 

According to the principles of Convolutional Neural Networks (CNNs), feature maps 

are generated by convolving the input images with convolutional kernels. The kernels 

slide over the images and compute feature values. Multiple convolutional kernels can 

produce multiple feature maps, thereby extracting rich information from the images. 

Therefore, the number of convolutional kernels used in each convolutional layer 

directly determines the number of feature maps output by that layer [32]. Each kernel 

is designed to capture specific features, such as edges, textures, or other patterns, while 

different input images contain different features. Consequently, even with the same 

convolutional kernel, the resulting feature maps from different images will differ. 

In our experiment, we set the number of convolutional layers to 1 and the number of 

convolutional kernels to 10. This allows each kernel to learn different types of features, 

enhancing the model's expressive capability. Additionally, using multiple kernels can 

reduce the risk of overfitting since the model structure remains relatively simple with a 

moderate number of parameters. This configuration also improves computational 

efficiency by allowing the parallel generation of feature maps, thereby accelerating the 

training process. Overall, this approach effectively balances the diversity of feature 

extraction with model complexity, contributing to improved model performance. 

Considering that photonics convolution operations process one-dimensional(1D) data, 

it is necessary to convert image information into 1D data according to the principles of 

convolutional kernels and then revert the results of the multiplication operation back 

into two-dimensional images. In each classification task, the results after one layer of 

optical convolution are illustrated in Figure S1, which shows the outcomes of 

convolving 10 different images with 10 different convolutional kernels for each class. 
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S2 The principle of achieving full connected operation 

through MZM 

The convolutional layer extracts features from the input image and transforms them 

into high-dimensional feature maps. After undergoing nonlinear activation and pooling 

processes, these feature maps are flattened into a one-dimensional vector, which serves 

as the input to the fully connected layer. The core principle of the fully connected layer 

is to multiply this flattened feature vector by a set of learnable weights. After 

multiplying the input data with the weights, the resulting vector from the fully 

connected multiplication is summed up, then, the model obtains an output vector that 

represents a linear combination. The same set of weights will be multiplied with 

different feature maps to obtain an output value. Each of output value corresponds to a 

score for different classes, which can be used to determine which class the input image 

belongs to. Ultimately, the class associated with the neuron that has the highest score is 

selected as the classification result [46]. 

Based on this, the principle of implementing fully connected operations using two 

modulators primarily relies on the ability of these devices to control the intensity of the 

input optical signals, thereby enabling multiplication operations on the signals. For the 

first Mach-Zehnder Modulator (MZM), the relationship between the input optical 

power Pin and the output optical power Pout can be expressed as: 

 

M1(v1i) is the modulation function of the first modulator for the radio frequency (RF) 

input signal v1i. The modulated optical beam P1out then enters the second modulator, 

where it undergoes further modulation based on the second RF input signal v2i. At this 

point, the output optical power can be expressed as: 

 

where M2(v2i) represents the modulation function of the second modulator. It is 

noteworthy that both M1 and M2 are in the form of cosine functions. This process 

enables the modulation of the optical signal based on both RF input signals, effectively 
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performing the desired operations for the fully connected layer. 

Since the operating points of the two modulators are at orthogonal points, the 

outputs near these points exhibit an approximate linear relationship with the RF input 

signals v1i and v2i, as shown in Figure S2. Thus, this method allows for the 

multiplication of the two input signals. In the context of the TWM-PNNA system, the 

first modulator is used to load the flattened 1D data of the feature map into optical path, 

as shown in Figure S3, while the second modulator is used to load the weight 

information. The results after the optical fully connected layer are illustrated in Figure 

S4. Additionally, to ensure that the two RF signals are matched, the two modulators are 

connected in series, and it is essential to maintain equal lengths for the RF signal 

connection lines between the two modulators. A phase shifter (Spectrum, S-0140-

KFKM) is employed to adjust the phases of the input RF signals to both modulators, 

ensuring that they are time-aligned. 

S3 Noise control of push-pull modulation and single-drive 

modulation 

Regarding modulation chirp and its impact on accuracy, it is indeed necessary to 

carefully control various noise sources during the experimental process. We compared 

the eye diagrams of push-pull modulation under driving voltage Vpp1=-Vpp2=1.5V and 

single ended modulation driving voltage Vpp=3V, and tested their signal-to-noise ratio 

(SNR) to reflect the influence of noise. The experimental results are shown in Figures 

S5 and S6. It can be observed from the figures that under the same extinction ratio, the 

SNRs of push-pull modulation and single-drive modulation are similar, indicating that 

factors other than noise contribute to the precision. Additionally, the voltage required 

for push-pull modulation is half that of single-arm modulation, further demonstrating 

the low-power advantage of push-pull modulation. 
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S4 Energy efficiency estimation 

Another key metric for optical computing, aside from speed, is power consumption. In 

our proof-of-concept setup, power consumption is primarily attributed to tunable lasers, 

EDFA, modulator drivers, WSS, and other components. However, since this 

demonstration relies on discrete devices, it is challenging to fully illustrate the ultimate 

capabilities of our approach. Thanks to the development of hybrid and monolithic 

integration techniques [52,53], as well as advancements in related technologies, the 

functions of the discrete devices used in the experiment can be implemented using 

integrated chips, which provides the possibility to measure the power consumption of 

TWM-PNNA systems. Therefore, to address the energy efficiency estimation issue of 

the TWM-PNNA system, we estimate the energy efficiency of a fully integrated optical 

TWM-PNNA system based on similar protocols from prior works (refs. [19,20,54]). 

According to ref [20], the main sources of power consumption include light sources 

and optical amplifiers and the high-speed optical-electronic conversion processes in 

input (modulator) and output (photodetector). Among them, the on-chip pump power 

required for generating the microcomb can be as low as 98 mW [52] and on-chip SOAs 

typically consume 390 mW [53]. In addition, the power consumption required for the 

weighting process can be reduced by using low loss phase change materials [51]. The 

power consumption on the input side comes from the modulator itself as well as from 

the drivers, ADCs and DACs, while the energy consumption of photodetection is 

primarily determined by the TIA. Therefore, the estimated power costs are as follows: 

5.36 pJ/sample for the modulator with driver (28 GHz) [47], 2 pJ/conversion for the 

ADC (8 bits) [48], 2.72 pJ/conversion for the DAC (8 bits) [49] and 1.14 pJ/sample for 

the TIA (53 GHz) [50].  

So, the computing speed of our prototype TWM-PNNA is 1.6 TOPS, with an estimated 

power consumption of 98 + 390 + (5.36 + 1.14 + 2.72 + 2) × 20×6 = 1834 mW (fully 

connected computation requires an additional five modulators). This results in an 

energy efficiency of approximately 0.87 TOPS/W. For a TWM-PNNA with a 9×9 
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kernel matrix and a modulation rate of 50 Gbaud, the computing speed would increase 

to 2×10×81×50= 81 TOPS, with a corresponding power consumption of 98 + 390 + 

(5.36 + 1.14 + 2.72 + 2) × 50×6 = 3854 mW (3.854 W). The estimated energy efficiency 

in this case would be approximately 21.02 TOPS/W. 

It is important to note that these power consumption estimates are based on ideal 

conditions. Despite some challenges with integrated TWM-PNNA, there are still 

significant advantages in energy efficiency compared to electronic products such as 

CPUs and GPUs. Further, we compared the performance of the most advanced 

integrated photon computing architecture and electronic GPU in various aspects, as 

shown in Table S1. In addition, the optical neuron in the table reflects the scale of the 

network. 

Table S1. Comparison of state-of-the-art integrated photonic computing architecture and electrical 

GPUs 

Source 

Data 

loading rate 

(Gbaud ) 

Operations 

Per Second 

(TOPs) 

Power 

(W) 

Energy 

Efficiency 

(Tops/W) 

#optical 

neuron 

WDM+PCM 

[54]  
2 0.12 3.33 0.4 20 

InP SOA [56]  10 - - 0.24 44 

Photonic neuron 

[57]  
N/A 0.27 3.75 0.07 67 

Diffractive cell 

[58]  
1×10-5 2×10-3 0.0175 0.11 260 

PPU [20]  17 0.136 0.679 0.2 12 

Nvidia Jetson 

Nano [55]  
N/A 0.5 5-10 0.05 N/A 

This work 20 1.6 1.83 0.87 1660 

This work in 

theory 
50 81 3. 85 21.02  

 

Based on the table data, we plotted the figure of power versus operations per second 

under different computing architectures as shown in Fig. S7. In addition, we also 

provide the following analysis on the performance of TWM-PNNA and electronic chips 

in terms of latency or time to completion for algorithms (s), cost, physical size, or 
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reliability: 

1. Latency and Time-to-Completion: 

When calculating latency, it is necessary to consider the delays in various stages 

such as input preparation, output detection, gradient update and the length of the 

physical path, etc. [19, 59]. Our solution uses optical fibers to achieve dispersion 

delay, so the physical path dominates in latency. The longest fiber we used in the 

experiment is 7.35 km, and the propagation rate of light in the fiber is 2×108 m/s. 

Therefore, the latency caused by the physical path is approximately 36.8 μs, which 

is a constant value related to the length of the fiber. The delay caused by modulators 

and photodetectors is at the ns level [13]. However, by using waveshaper or 

dispersive fiber (dispersion coefficient -200 ps/km/nm), the length of the optical path 

used can be significantly shortened, thereby reducing the latency of the system by 

a factor 10 or more.  

2. Cost and Physical Size: 

Our system incorporates numerous a number of discrete components (lasers, 

modulators, EDFAs, WSSs, etc.), which increases the cost and physical size. 

However, recent advances in hybrid integration [60], bonding [61] and transfer 

printing [62] of silicon photonics can help reduce the size of the TWM-PNNA via 

chip-scale integration, significantly reducing cost and physical size. 

3. Reliability: 

Reliability is more suitable for systems entering the product stage, and requires 

long-term testing. Our study is in its early research and is not suitable for reliability 

testing. However, the integration of advanced materials [63], combined with the 

optimization of CMOS processes [64] and robust packaging technologies [65] can 

provide some help in improving the reliability and yield of device manufacturing in 

the future. 

S5 Future oriented all-optical DAS event recognition system 

Figure S8 illustrates the schematic diagram of a forward-looking, all-optical approach 
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for processing DAS data. In this envisioned all-optical DAS signal processing system, 

the fiber plays a dual role, serving both as a sensing element and as an optical delay line 

for convolution operations. The system is powered by a multi-wavelength NLL, which 

serves as the light source for the entire architecture. To address the requirements for 

event recognition in areas of interest, the system integrates optical storage to retain the 

acquired sensing signals. These stored optical signals are then processed along the 

optical path, employing an IQ demodulation scheme to extract and unwrap phase 

information, ultimately recovering complete phase data. Building on this foundation, 

optical convolution weighting and fully connected operations are performed using a 

TWM-PNNA-based optical neural network for event classification. This work 

represents a significant step toward future DAS systems that rely entirely on optical 

methods, integrating optical storage, delay, demodulation, phase unwrapping, and 

neural network-based event recognition for unprecedented efficiency and scalability. 

S6 Comparison of classification Results  

Table S2 presents the accuracy of both test and training sets across various image 

dimensions, including 16×16, 32×32, 36×36, 64×64, and 128×128. To validate the 

impact of image resolution on the results, in these control experiments, except for the 

difference in image resolution, all other parameters remain the same. The table 

illustrates that a notable drop in accuracy occurs at the 16×16 size, suggesting a 

considerable loss of image detail. Moreover, the table reveals that the accuracy for 

32×32 and 128×128 images is nearly identical, implying that beyond a certain threshold, 

the size of the image has a negligible effect on accuracy. The specific confusion matrix 

is shown in Figure S9-S13. Additionally, table S3 examines the classification accuracy 

of both binary and non-binary images using an electrical neural network across different 

image dimensions. The results indicate that converting the DAS data image to binary 

form does not appreciably diminish its accuracy, suggesting that the image's 

information integrity is preserved post-conversion. The specific confusion matrix is 

shown in Figure S14-S18. 
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Table S2. Comparison of classification accuracy for optical and electrical neural network under 

different sizes.  

 

Input Size 128×128 64×64 36×36 32×32 16×16 

Train-electrical 99.29% 99.36% 99.49% 99.22% 94.07% 

Test-electrical 98.65% 98.25% 98.11% 98.51% 91.25% 

Train-optical 95.69% 95.32% 95.92% 95.42% 91.65% 

Test-optical 93.53% 94.89% 94.61% 95.56% 89.77% 

 

Table S3. Comparison of classification accuracy for electrical neural network with/without binary 

under different sizes. 

 

Input Size 128×128 64×64 36×36 32×32 16×16 

Train-electrical-binary 99.29% 99.36% 99.49% 99.22% 94.07% 

Test-electrical-binary 98.65% 98.25% 98.11% 98.51% 91.25% 

Train-electrical-non-binary 99.76% 99.66% 99.56% 99.49% 95.18% 

Test-electrical-non-binary 98.38% 97.98% 98.25% 98.38% 91.65% 

S7. Experimental details of the optical computing system 

In the specific experiment, the system begins with 4 independent tunable lasers emitting 

light at 4 wavelengths, spaced by 2 nm, which form the 2×2 convolution kernels. These 

wavelengths (1546.52 nm, 1548.52 nm, 1550.52 nm and 1552.52 nm, the power of each 

laser is set to 0 dBm.) are combined into a single beam after passing through a 

Wavelength Division Multiplexer (WDM). The effectiveness of WDM in enhancing 

data transmission, system capacity, and signal integrity has been extensively 

demonstrated in prior studies. The combined beam then enters an optical switch (OSW), 

outputting from port A of the switch into a Mach-Zehnder modulator (MZM, Fujitsu, 

FTM7937EZ, bandwidth 30 GHz).  

A 36×36 pixel binarized image obtained from the DAS database is flattened into a 1D 

vector X and encoded into an arbitrary waveform generator (AWG, Tektronix, 

AWG7000B). The method of data unfold is shown in Fig.S19. The modulator, operating 

at the quadrature point, encodes this vector into an optical time-domain signal, with 
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each pixel represented by one bit of the modulated signal. Additionally, the maximum 

bandwidth of this modulator is 30 GHz. The AWG transmits the signal at 10 G baud, 

and at this point, vector X is simultaneously modulated onto all 4 wavelengths. The 

output vector is obtained by detecting the signals in each time slot.  

A single-mode fiber (SMF) of a certain length provides progressive delays for each 

channel to match the baud rate of the data emitted by the AWG, ensuring that the signals 

on adjacent wavelength channels are time-shifted by the same number of symbol 

positions. Here, the dispersion coefficient of the single-mode fiber is 17 ps/km/nm, so 

the required fiber length to achieve a symbol shift is 2.9 km. Next, an EDFA is 

employed to compensate for the insertion loss of the modulator and the loss of light at 

different wavelengths after passing through the SMF. The EDFA is set to 5 dBm. 

The amplified wavelength channels are then shaped by a wavelength-selective switch 

(WSS, CoAdna, 50GHz Nx1-1.2), which functions as a combination of WDM and 

filters. The WSS provides flexible wavelength selection and routing while controlling 

the attenuation of each wavelength channel. This attenuation represents the weight 

information applied to each wavelength channel, allowing the weight value Wi to be 

assigned to wavelength λi. Subsequently, the output light enters a high-speed 

photodetector (PD, Finisar, XPDV21x0, bandwidth 40 GHz), which aggregates the total 

optical power at each wavelength. Additionally, the WSS can realize different 

convolution kernels by reconfiguring the routing and attenuation of different 

wavelength channels.  

Finally, the electrical output waveform after the photonic convolution is sampled and 

digitized by a high-speed oscilloscope (OSC, Tek, DPO75902SX) to obtain the feature 

map. The optical switch is then adjusted so that the laser light emitted from the lasers 

enters through port B of the switch. The flattened feature map is also loaded into the 

optical path through the AWG and MZM. The output light from the modulator passes 

through the WDM, filtering the laser light so that each output channel contains only 

one wavelength. Furthermore, each output channel of the WDM connects to an MZM 

to load different weight parameters, thereby achieving multiplication operations. The 

output light then enters the PD and is collected by the OSC, completing the addition 
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operations required for the fully connected layer.  

This process demonstrates the system's ability to perform optical convolution and fully 

connected layer operations efficiently, leveraging advanced optical components and 

precise parameter control. 

S8. Reliability and repeatability of results. 

In this study, we primarily focused on evaluating the model's classification performance 

using Recall, Precision, and F1-score, as these metrics are widely accepted in machine 

learning for assessing classification effectiveness. The detailed evaluation metrics for 

recall, precision and F1-score of the Electronic Neural Network Model and TWM-

PNNA are presented in Table S4 and Table S5, respectively. Recall measures the 

model's ability to correctly identify positive class samples and is related to the rows of 

the confusion matrix, reflecting the model's coverage capability for a specific class. 

Precision, on the other hand, evaluates the proportion of predicted positive samples that 

are truly positive and is associated with the columns of the confusion matrix, indicating 

the accuracy of the model's predictions for a specific class. The F1-score, a harmonic 

mean of recall and precision, provides a balanced measure of the model's overall 

performance. These metrics comprehensively reflect the model's performance across 

various aspects, such as coverage capability, accuracy, and balance, helping to validate 

the model's robustness and generalization ability. If the experiment maintains high 

Recall, Precision, and F1-score across different datasets or environments, it indicates 

that the model possesses high repeatability and reliability. For the TWM-PNNA model 

in distributed sensing event recognition, performance is strong at higher resolutions 

(128×128 to 32×32), with recall, precision, and F1-scores consistently exceeding 98% 

for most classes, such as Recall2, Recall3, and Recall4. However, performance declines 

at the lower resolution of 16×16, particularly for Recall1 (84.56%) and Precision4 

(87.42%), indicating reduced effectiveness in identifying certain events, such as 

background events, at lower resolutions. While F1-scores remain robust at higher 



13 

 

resolutions (e.g., F1-Score2 at 96.98% for 32×32), they drop significantly at 16×16 

(e.g., F1-Score1 at 89.24%). It can be seen while the TWM-PNNA model faces 

challenges in event recognition at lower resolutions, it performs well at higher 

resolutions (such as 36×36, which is primarily used in the experiment), demonstrating 

a certain level of reliability and repeatability. 

In addition to these classification metrics, we further assessed the consistency and 

accuracy of the feature maps generated by optical and electronic computing. 

Specifically, we computed the Root Mean Square Error (RMSE) and Mean Absolute 

Percentage Error (MAPE) between the optical and electronic feature maps to quantify 

their similarity, as shown in Fig. S20 and Fig. S21. It can be seen that the error between 

the TWM-PNNA and electronic computing feature maps is small, with a maximum 

RMSE of only 0.0208, indicating that the overall numerical deviation is well-controlled. 

The maximum MAPE of 7.2577% suggests that some feature points have slightly 

higher relative errors, but the overall consistency remains good. Furthermore, we 

analyzed the standard deviation (STD) of classification performance across different 

tasks in both TWM-PNNA and electronic domains, as shown in Fig. S22. The standard 

deviation of classification tasks in TWM-PNNA and electrical computing is close, 

indicating that these errors will not significantly affect the final performance, and the 

repeatability and reliability of TWM-PNNA results are strong. 

 

Table S4. Evaluation Metrics for the Electronic Neural Network Model. 

 

 128×128 64×64 36×36 32×32 16×16 

Accuracy 99.17% 99.11% 99.22% 99.08% 93.51% 

Recall1 97.36% 97.08% 97.45% 96.99% 88.74% 

Recall2 99.64% 99.76% 99.76% 100.00% 96.17% 

Recall3 100.00% 100.00% 100.00% 100.00% 94.61% 

Recall4 100.00% 100.00% 100.00% 99.79% 95.91% 

Precision1 100.00% 100.00% 100.00% 99.81% 95.45% 

Precision2 99.17% 98.94% 99.29% 99.17% 92.08% 

Precision3 98.76% 98.76% 99.10% 98.99% 94.61% 

Precision4 98.63% 98.63% 98.41% 98.31% 91.65% 

F1-Score1 98.66% 98.52% 98.71% 98.38% 91.97% 

F1-Score2 99.41% 99.35% 99.53% 99.58% 94.08% 
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F1-Score3 99.38% 99.38% 99.55% 99.49% 94.61% 

F1-Score4 99.31% 99.31% 99.20% 99.04% 93.73% 

 

Table S5. Evaluation Metrics for the TWM-PNNA. 

 

 128×128 64×64 36×36 32×32 16×16 

Accuracy 95.26% 95.23% 95.67% 95.45% 91.28% 

Recall1 87.07% 86.53% 87.97% 87.61% 84.56% 

Recall2 98.77% 99.15% 99.14% 99.01% 94.81% 

Recall3 99.29% 99.52% 99.30% 99.18% 94.04% 

Recall4 99.09% 99.31% 99.09% 98.98% 94.08% 

Precision1 99.22% 99.61% 99.22% 99.32% 94.48% 

Precision2 94.68% 95.98% 94.92% 95.04% 90.66% 

Precision3 94.94% 93.60% 96.07% 95.06% 92.25% 

Precision4 91.75% 91.33% 92.07% 91.97% 87.42% 

F1-Score1 92.75% 92.61% 93.26% 93.10% 89.24% 

F1-Score2 96.68% 97.54% 96.98% 96.98% 92.69% 

F1-Score3 97.07% 96.47% 97.66% 97.07% 93.14% 

F1-Score4 95.28% 95.15% 95.45% 95.34% 90.63% 

 

Supplementary references 

All references are added in the reference list following the main document.  
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Supplementary figures 

 

 

Fig. S1. The results of convolving 10 images from each category with 10 different convolutional 

kernels. (a~j):kernel1~kernel10. 



16 

 

 

 

Fig. S2. Measured spectra of the MZM.  
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Fig. S3. Flattened 1D Feature Map. (a1-a4): Electrical signal; (b1-b4): Optical signal modulated by 

the first MZM. 
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Fig. S4. Results of optical fully connected operation. (a) weights corresponding to each 

classification event; (b) results of multiplying images by their corresponding weights; (c) 

classification results of the events 
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Fig. S5. Eye diagram results of push-pull and single ended modulation in back-to-back situations. 
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Fig. S6. The ER and SNR results of push-pull and single ended modulation in back-to-back 

situations. 
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Fig. S7. Schematic diagram of power versus operations per second under different computing 

architectures. 
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Fig. S8. Schematic diagram of the principle of all-optical processing of DAS data, including the 

DAS sensing section, optical storage section, optical demodulation section, and optical neural 

network data processing section. 
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Fig. S9. The confusion matrix for the DAS classification task, input size = 128 ×128: (a) Confusion 

matrix for the Electrical CNN during training; (b) Confusion matrix for the Electrical CNN during 

testing; (c) Confusion matrix for the TWM-PNNA during training; (d) Confusion matrix for the 

TWM-PNNA during testing. 
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Fig. S10. The confusion matrix for the DAS classification task, input size = 64 ×64: (a) Confusion 

matrix for the Electrical CNN during training; (b) Confusion matrix for the Electrical CNN during 

testing; (c) Confusion matrix for the TWM-PNNA during training; (d) Confusion matrix for the 

TWM-PNNA during testing. 
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Fig. S11. The confusion matrix for the DAS classification task, input size = 36×36: 

(a) Confusion matrix for the Electrical CNN during training; (b) Confusion matrix 

for the Electrical CNN during testing; (c) Confusion matrix for the TWM-PNNA 

during training; (d) Confusion matrix for the TWM-PNNA during testing. 
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Fig. S12. The confusion matrix for the DAS classification task, input size = 32 ×32: 

(a) Confusion matrix for the Electrical CNN during training; (b) Confusion matrix 

for the Electrical CNN during testing; (c) Confusion matrix for the TWM-PNNA 

during training; (d) Confusion matrix for the TWM-PNNA during testing. 
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Fig. S13. The confusion matrix for the DAS classification task, input size = 16 ×16: 

(a) Confusion matrix for the Electrical CNN during training; (b) Confusion matrix 

for the Electrical CNN during testing; (c) Confusion matrix for the TWM-PNNA 

during training; (d) Confusion matrix for the TWM-PNNA during testing. 
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Fig. S14. The confusion matrix for the DAS classification task, input size = 128 ×128. 

(a) Confusion matrix for the Electrical CNN during training, binary;(b) Confusion 

matrix for the Electrical CNN during testing, binary;(c) Confusion matrix for the 

Electrical CNN during training, non-binary;(d) Confusion matrix for the Electrical 

CNN during testing, non-binary. 
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Fig. S15. The confusion matrix for the DAS classification task, input size = 64 ×64. 

(a) Confusion matrix for the Electrical CNN during training, binary;(b) Confusion 

matrix for the Electrical CNN during testing, binary;(c) Confusion matrix for the 

Electrical CNN during training, non-binary;(d) Confusion matrix for the Electrical 

CNN during testing, non-binary. 
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Fig. S16. The confusion matrix for the DAS classification task, input size = 36 ×36. 

(a) Confusion matrix for the Electrical CNN during training, binary;(b) Confusion 

matrix for the Electrical CNN during testing, binary;(c) Confusion matrix for the 

Electrical CNN during training, non-binary;(d) Confusion matrix for the Electrical 

CNN during testing, non-binary. 
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Fig. S17. The confusion matrix for the DAS classification task, input size = 32 ×32. 

(a) Confusion matrix for the Electrical CNN during training, binary;(b) Confusion 

matrix for the Electrical CNN during testing, binary;(c) Confusion matrix for the 

Electrical CNN during training, non-binary;(d) Confusion matrix for the Electrical 

CNN during testing, non-binary. 
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Fig. S18. The confusion matrix for the DAS classification task, input size = 16 ×16. 

(a) Confusion matrix for the Electrical CNN during training, binary;(b) Confusion 

matrix for the Electrical CNN during testing, binary;(c) Confusion matrix for the 

Electrical CNN during training, non-binary;(d) Confusion matrix for the Electrical 

CNN during testing, non-binary. 
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Fig. S19. Two-dimensional data is unfolded according to the convolution rules. 

  



34 

 

 

Fig. S20. The RMSE between the TWM-PNNA and electronic computing feature 

maps. 
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Fig. S21. The MAPE between the TWM-PNNA and electronic computing feature 

maps. 
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Fig. S22. The STD between different events in TWM-PNNA and electronic 

computing. 


